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Additional test cases were run using a precision special perturbations program
employing either Cowell's method or a variation-of-parameters method to com-
pute a nearly circular, nearly equatorial orbit using two different perturbative
accelerations. The results obtained again indicate that the variation-of-parameters
method with a predict-only integrator and Cowell's method with a predict-partial-
correct integrator are equally efficient, and both are significantly more efficient
than Cowell’s method with a predict-correct integrator.

l. Introduction

The primary objective of the second phase of this study
was to determine an accurate measure of the im-
provement to be expected from using the variation-of-
parameters method in place of Cowell's method when
computing precision satellite orbits. Reference 1 shows
that, in the case of the Mariner Mars 1971 Mission A
orbit as described in Ref. 2,

1) The variation-of-parameters method integrating six
P g g
parameters is not significantly more efficient than

30

Cowell's method with a predict-partial-correct
integrator;

The variation-of-parameters method integrating six
parameters and Cowell's method with a predict-
partial-correct integrator are both significantly
more efficient than Cowell’s method with a predict-
correct integrator. The Central Processing Unit
(CPU) times are approximately 209% less, and the
total costs are approximately 89 less. These per-
centages will be even larger for perturbative func-
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tions which are more complex than the one used in
this study.

The objective of this third and final phase of investiga-
tion is to compare the variation-of-parameters method
with Cowell's method in the case of a nearly circular,
equatorial orbit (an osculating eccentricity and inclina-
tion of 0 at ¢,). The previous comparisons were made in
the case of the eccentric Mariner Mars 1971 Mission A
orbit (an osculating eccentricity and inclination at ¢, of
approximately 0.633 and 80 deg, respectively). The initial
state vector for this phase of study is

q’' = (a,¢,1,0,0,T)
= (4643 km, 0, 0 deg, 328.3937 deg, 38.3701 deg,
11/19/71 14*42» UTC) (1)

In addition, two perturbative accelerations are used. The
first perturbative acceleration i‘\J2+NB+SP is the same as the

one used previously and includes the effects of the
asphericity of the central body (J. only), N bodies other
than the central body, and solar radiation pressure. The
second perturbative acceleration ¥y contains only the

2
effect of the asphericity of the central body (J. only).

Il. Discussion

In this final phase of investigation, three of the four
processes of orbit prediction compared in phase two of
the study (Ref. 1) are compared for the case of a nearly
circular orbit that lies nearly in the equatorial plane of
Mars. The first process is the variation-of-parameters
method with a predict-only, sixth-order, variable-step
(ERMX/ERMN = r,/r) integrator.” In this process the six
parameters @q, @y, hs, hy, h., and L are integrated. The
parameters 4, and n are determined from the integrated
values of ag, @y, hs, hy, and h. through the equations (see
Ref. 3)

1 1—a-a\?*?
a; = ——h—~(amhw+ayhu)andn =\/,E< T >
(2)

¥

(Note that the parameter a. is well determined since
h. > > 0 in the case of i ~ 0). The second process is
Cowell’s method with a predict-correct, tenth-order,
variable-step (constant ERMX and ERMN) integrator.

1IERMX/ERMN = error maximum/error minimum.
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The third process is Cowell's method with a predict-
partial-correct, tenth-order, variable-step (constant ERMX
and ERMN) integrator.

As in phase two, each of the three processes of orbit
prediction was used to generate trajectory data in such a
way that no calibration factors were necessary. In addi-
tion, the cost and accuracy criteria used are the same as
those used in phase two (see Ref. 1).

Sixteen cases were run in this phase. Each case used
the same initial state vector (Eq. 1) and one of the three
processes of orbit prediction described above. Nine cases
used the perturbative acceleration r J,ANBeSP and seven

cases used the perturbative acceleration , . The standard

of comparison for each of the two sets was obtained
using process two (Cowell predict-correct) with a very
tight local error control (see Section 6.1 in Ref. 2). In the
first set (Is,.ws.sp), three cases were run using each of
the three processes (one case is the standard of compari-
son). The three cases differed only in the proportionality
constants used in the local error control. In the second set
(i‘}z), two cases were run using process one, three cases

(one of which is the standard of comparison) were run
using process two, and two cases were run using process
three.

lll. Results and Conclusions

These cases show that the two orbits differ significantly
from each other and from the orbit integrated in phases
one and two. The nearly circular, equatorial orbit using

i'\JD differs from the elliptical Mariner orbit primarily in

size and shape (and therefore in size of integration step).
The nearly circular equatorial orbit using F JPNBISP differs

from the elliptical Mariner orbit not only in size and
shape but in the effect of solar radiation pressure. In the
former, the solar radiation pressure plays a dominant role
in the stepping procedure by requiring a restart each time
the spacecraft passes in and out of the shadow of Mars
(every revolution). In the latter, the spacecraft did not
enter the shadow. The two nearly circular, equatorial
orbits differ from each other in the complexity of the
perturbative acceleration (and consequently in the cost
of the derivative evaluations) as well as in the presence
or absence of restarts due to solar radiation pressure.

Table 1 presents the cost and accuracy data for all
three processes of orbit prediction using the perturbative
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acceleration Ty, wvpesp 0 the nearly circular, equatorial

orbit. Table 2 presents similar data for the perturbative
acceleration i'\J2.

In comparing the accuracy of the variation-of-param-
eters cases and the Cowell cases, the single time-point
comparisons used in phases 1 and 2 are inconsistent (a
tighter ERMX does not necessarily yield more accuracy)
and must be replaced by comparisons of the error propaga-
tion curves given in Figs. 1-4. This inconsistency appears
to be due to the insensitivity of the local error control
when the orbit is nearly circular. For example, the two
cases run using Cowell’s method with a predict-correct
integrator yield the same accuracy for values of ERMX
quite different (see Table 2).

The cases in Table 2 are essentially fixed-step integra-
tions, since they begin with a step size of 30 seconds,
immediately double until the local error approaches
ERMX, and then continue at that step size. Unfortu-
nately, the final step sizes in the Cowell cases do not
appear to be optimally determined, since a tighter ERMX
does not necessarily yield more accuracy.

Figures 1-4 exhibit the more systematic error growth
in the case of the variation-of-parameters (consistent with
phases 1 and 2). In addition, these figures show that the
errors for all these cases are roughly the same during
the first 20 revolutions. It appears that these cases need
to be run for more than 20 revolutions or with a more
sensitive local error control in order to show large error
differences.

Based upon these tables and figures and the results of
phases one and two (see Refs. 1 and 2), the following
primary conclusions are made:

(1) The variation-of-parameters method is not signifi-
cantly more efficient than Cowell’s method with a
predict-partial-correct integrator regardless of the
type of orbit or complexity of the perturbative
acceleration.

(2) The variation-of-parameters method with a predict-
only integrator and Cowell’s method with a predict-
partial-correct integrator are both significantly
more efficient than Cowell’s method with a predict-
correct integrator regardless of the type of orbit or
complexity of the perturbative acceleration. The
CPU times are approximately 20%, 17%, and 16%
less, respectively, in the case of the elliptical orbit
perturbed by i'\J2+NB+sP, and the nearly circular orbit
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perturbed by i‘\J2+NB+Sp, and the nearly circular orbit
perturbed by 1'.-\,2 . In addition, the total costs are
approximately 8%, 129%, and 6% less, respectively.
A comparison of these percentages for the cases of
the nearly circular orbit shows that an increase in
the complexity of the perturbative acceleration re-
sults in increases in these percentages. Conse-
quently, these percentages will be even larger for
perturbative accelerations that are more complex
than the ones used in this study.

(3) The variation-of-parameters method should not be
incorporated into the standard production and mis-
sion operations versions of DPTRAJ, since the
equally efficient Cowell’s method with a predict-
partial-correct integrator already exists as an option
in these versions. However, the variation-of-
parameters method should be maintained in the
research version of DPTRA]J so that future studies
can be conducted as new cost saving ideas arise
and as funds and manpower become available.

In addition to these primary conclusions, the following
secondary conclusions based on the data in phase
three are made:

(1) The present local error control based upon ERMX
and ERMN is insensitive in the case of a nearly
circular orbit. In this case, a fixed-step integrator
should be used with a specialized algorithm for
choosing the optimum step size.

(2) Only the perturbative effects consistent with the
desired accuracy should be used during an integra-
tion. For example, suppose an accuracy is desired
of order J. in 20 revolutions of a nearly circular
orbit. It would cost half as much and be four times
as fast to integrate using i'f,z instead of i}J2+NB+sp

(see Tables 1 and 2).

(3) The variation-of-parameters method as formulated
in Ref. 3 can compute satellite orbits having eccen-
tricities and inclinations near or equal to zero as
efficiently as Cowell’'s method.

IV. Summary of Complete Study

Test cases run using a precision special perturbations
program employing either Cowell's method or a variation-
of-parameters method to compute an elliptical orbit for
two widely different eccentricities and inclinations were
analyzed to determine which method is more efficient.
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The results obtained indicate that the variation-of- grator, Either of the former more efficient methods for
parameters method with a predict-only integrator and  computing precision satellite orbits offers the potential
Cowell’'s method with a predict-partial-correct integrator ~ for reducing the total cost of computations during orbit

are equally efficient, and both are significantly more effi-  design and computer execution time during real-time
cient than Cowell’s method with a predict-correct inte-  mission operations for future orbiter projects.
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Table 1. Cost versus accuracy using V) +NBSP

Local error control Accuracy? Cost
Method Core time Thro.ugh-
ERMX ERMN Jar|,m  |AE|,m/s _CPU product, Total cost, put time, s
time, s piloword /h dollars
1. Cowell predict-correct 10-11 10-18 0.149 0.00010 247 7.50 81.43 514
0.082  0.00005
2. Cowell predict-correct 10-9 10-14 0.465  0.00029 187 6.24 67.47 445
0.379  0.00026
3. Cowell predict-partial- 10-1t 10-16 0.261 0.00018 202 6.58 71.20 482
correct 0.220 0.00014
4. Cowell predict-partial- 10-10 10-15 1.67 0.00108 176 6.00 64.81 451
correct 1.75 0.00116
5. Cowell predict-partial- 10-° 10-14 0.512  0.00032 157 5.58 60.12 433
correct 0.427  0.00030
6. Variation-of-parameters,  10-9 (r,/r) 10-13 (r,/r) 2.203  0.00143 188 6.29 68.15 465
predict-only 2.276  0.00151
7. Variation-of-parameters, ~ 5X10-° (r,/r) 5%10-18 (r,/r) 2.867 0.00187 177 6.03 65.31 454
predict-only 3.049  0.00202
8. Variation-of-parameters, 5/2 X10-8 (r /r) 5/2 X10-2 (r,/r) 0.766 0.00051 155 5.42 59.00 437
predict-only 0.802  0.00052
aThese errors occur in revolution 20 at ¢ — ¢, = 50 h 40 min and 52 h, respectively (period of orbit =2 h 40 min)
Table 2. Cost versus accuracy using F\J
2
Local error control Accuracy?® Cost
. Through-
Method s Core time i
ERMX ERMN |Ar|mm |ax], FJPU product, Total cost, put time, s
mm/s  time, s jioword /h dollars
1. Cowell predict-correct 10-1t 10-16 5.864 0.0036 62 3.67 35.77 337
4.302  0.0031
2. Cowell predict-correct 10-¢ 10-14 5.864 0.0036 63 3.79 36.70 363
4.302  0.0031
3. Cowell predict-partial- 10-1t 1018 5.983  0.0037 52 3.47 33.47 304
correct 4,569  0.0032
4. Cowell predict-partial- 10-9 10-14 5.983  0.0037 52 3.61 34.42 328
correct 4569  0.0032
5. Variation-of-parameters, 10~ (r,/r) 10-13 (r,/7) 0.874  0.0005 60 3.19 32.21 316
predict-only 0.328  0.0002
6. Variation-of-parameters, 5/2 X10-8 (r,/r) 5/2 X10-12 (7,/r) 61.010 0.0651 44 2.83 28.25 300
predict-only 40.500  0.0597

aThese errors occur in revolution 20 at ¢+ — ¢, = 50 h 40 min and 52 h, respectively (period of orbit =2 h 40 min).
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Fig. 1. Error propagation in the variation-of-parameters
method and Cowell's method, cases 1, 3, and 6
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Fig. 2. Error propagation in the variation-of-parameters
method and Cowell’'s method, cases 2, 5, and 8
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Fig. 3. Error propagation in the variation-of-parameters
method and Cowell's method, cases 4 and 7
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Fig. 4. Error propagation in the variation-of-parameters method
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